论文标题

有效地整合散布的表达和身份特征,以表达面部表达转移和同义

An Efficient Integration of Disentangled Attended Expression and Identity FeaturesFor Facial Expression Transfer andSynthesis

论文作者

Ali, Kamran, Hughes, Charles E.

论文摘要

在本文中,我们提出了一个基于注意力的身份,以保留生成对抗网络(AIP-GAN),以克服从源图像到生成的面部图像的身份泄漏问题,这是在交叉对象的面部表达转移和合成过程中遇到的问题。我们的关键见解是,保留身份的网络应能够解散并构成形状,外观和表达信息,以进行有效的面部表达传递和综合。具体而言,我们的AIP-GAN的表达式编码器通过使用我们监督的空间和频道注意模块来预测其面部标志,从而从输入源图像中删除了表达信息。同样,通过推断出我们的自我监督的空间和通道智能注意的mod-ule,通过推断出其组合的固有形状和外观图像,从输入目标图像中提取了脱离的表达式不稳定身份特征。为了利用我们两个编码器的中间层编码的表达和身份信息,我们将这些功能与解码器的中间层所学的特征相结合,并使用交叉编码器双线性池操作。实验结果表明我们基于AIP-GAN的技术的表现有希望。

In this paper, we present an Attention-based Identity Preserving Generative Adversarial Network (AIP-GAN) to overcome the identity leakage problem from a source image to a generated face image, an issue that is encountered in a cross-subject facial expression transfer and synthesis process. Our key insight is that the identity preserving network should be able to disentangle and compose shape, appearance, and expression information for efficient facial expression transfer and synthesis. Specifically, the expression encoder of our AIP-GAN disentangles the expression information from the input source image by predicting its facial landmarks using our supervised spatial and channel-wise attention module. Similarly, the disentangled expression-agnostic identity features are extracted from the input target image by inferring its combined intrinsic-shape and appearance image employing our self-supervised spatial and channel-wise attention mod-ule. To leverage the expression and identity information encoded by the intermediate layers of both of our encoders, we combine these features with the features learned by the intermediate layers of our decoder using a cross-encoder bilinear pooling operation. Experimental results show the promising performance of our AIP-GAN based technique.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源