论文标题
部分可观测时空混沌系统的无模型预测
The hyperbolic geometry of financial networks
论文作者
论文摘要
根据2014年欧洲银行应力测试的数据,以及2018年的透明度练习,我们首次证明了财务网络的潜在几何形状可以通过负曲率的几何形状(即双曲线几何形状)的几何形状得到很好的代表。这使我们能够将网络结构连接到Papdopoulos等人的Punarition-VS相似性模型,该模型基于双曲线几何的Poincaré盘模型。我们表明,该模型中“普及”和“相似性”的潜在维度与系统的重要性和银行系统的地理细分密切相关。在2014年至2018年的纵向分析中,我们发现单个银行的系统性重要性仍然相当稳定,而周边社区结构则表现出更多(但仍然温和)的可变性。
Based on data from the European banking stress tests of 2014, 2016 and the transparency exercise of 2018 we demonstrate for the first time that the latent geometry of financial networks can be well-represented by geometry of negative curvature, i.e., by hyperbolic geometry. This allows us to connect the network structure to the popularity-vs-similarity model of Papdopoulos et al., which is based on the Poincaré disc model of hyperbolic geometry. We show that the latent dimensions of `popularity' and `similarity' in this model are strongly associated to systemic importance and to geographic subdivisions of the banking system. In a longitudinal analysis over the time span from 2014 to 2018 we find that the systemic importance of individual banks has remained rather stable, while the peripheral community structure exhibits more (but still moderate) variability.