论文标题

可解释的药物目标互动预测的多视图自我注意

Multi-View Self-Attention for Interpretable Drug-Target Interaction Prediction

论文作者

Agyemang, Brighter, Wu, Wei-Ping, Kpiebaareh, Michael Yelpengne, Lei, Zhihua, Nanor, Ebenezer, Chen, Lei

论文摘要

药物发现阶段是药物开发过程的重要方面,构成了开发管道初始阶段的一部分。最近,由于这些方法在其他域中成功地应用了这些方法,因此基于机器学习的方法被积极地用于建模用于合理药物发现的药物目标相互作用。在机器学习方法中,分子的数值表示对于模型的性能至关重要。尽管在分子表示工程中已经取得了重大进展,但这导致了靶标和化合物的几个描述符。同样,模型预测的解释性是可能具有多种药理应用的重要特征。在这项研究中,我们提出了一种基于自我注意的多视图表示方法,用于建模药物目标相互作用。我们使用三个基准激酶数据集评估了我们的方法,并将提出的方法与某些基线模型进行了比较。我们的实验结果证明了我们方法实现竞争性预测性能并提供生物学上合理的药物目标相互作用解释的能力。

The drug discovery stage is a vital aspect of the drug development process and forms part of the initial stages of the development pipeline. In recent times, machine learning-based methods are actively being used to model drug-target interactions for rational drug discovery due to the successful application of these methods in other domains. In machine learning approaches, the numerical representation of molecules is critical to the performance of the model. While significant progress has been made in molecular representation engineering, this has resulted in several descriptors for both targets and compounds. Also, the interpretability of model predictions is a vital feature that could have several pharmacological applications. In this study, we propose a self-attention-based multi-view representation learning approach for modeling drug-target interactions. We evaluated our approach using three benchmark kinase datasets and compared the proposed method to some baseline models. Our experimental results demonstrate the ability of our method to achieve competitive prediction performance and offer biologically plausible drug-target interaction interpretations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源