论文标题

XCOPA:用于因果共识推理的多语言数据集

XCOPA: A Multilingual Dataset for Causal Commonsense Reasoning

论文作者

Ponti, Edoardo Maria, Glavaš, Goran, Majewska, Olga, Liu, Qianchu, Vulić, Ivan, Korhonen, Anna

论文摘要

为了模拟人类语言能力,自然语言处理系统必须能够推论日常情况的动态,包括其可能的原因和影响。此外,他们应该能够将获得的世界知识概括为新的语言,模仿文化差异。机器推理和跨语言转移的进步取决于具有挑战性的评估基准的可用性。在这两种需求的激励下,我们引入了跨语性的合理选择(XCOPA),这是一种多种多样的多种语言数据集,用于11种语言的因果共识推理,其中包括诸如EasteralApurímacQuechua和Haitian Creoles等资源贫乏语言。我们在这个新型数据集上评估了一系列最新模型,这表明基于多语言预审经和零发出微调的当前方法与基于翻译的转移相比短。最后,我们提出策略,以使多语言模型适用于仅提供小型语料库或双语词典的样本外资源的语言,并报告对随机基线的实质性改进。 XCOPA数据集可在github.com/cambridgeltl/xcopa上免费获得。

In order to simulate human language capacity, natural language processing systems must be able to reason about the dynamics of everyday situations, including their possible causes and effects. Moreover, they should be able to generalise the acquired world knowledge to new languages, modulo cultural differences. Advances in machine reasoning and cross-lingual transfer depend on the availability of challenging evaluation benchmarks. Motivated by both demands, we introduce Cross-lingual Choice of Plausible Alternatives (XCOPA), a typologically diverse multilingual dataset for causal commonsense reasoning in 11 languages, which includes resource-poor languages like Eastern Apurímac Quechua and Haitian Creole. We evaluate a range of state-of-the-art models on this novel dataset, revealing that the performance of current methods based on multilingual pretraining and zero-shot fine-tuning falls short compared to translation-based transfer. Finally, we propose strategies to adapt multilingual models to out-of-sample resource-lean languages where only a small corpus or a bilingual dictionary is available, and report substantial improvements over the random baseline. The XCOPA dataset is freely available at github.com/cambridgeltl/xcopa.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源