论文标题
昆特波段的记忆效应
Memory effects in Kundt wave spacetimes
论文作者
论文摘要
确切的昆特波段中的记忆效应显示在这种空间中的大地学行为中会产生。我们在这里考虑的昆特空间的类型是$ h^2 \ times m(1,1)$和$ s^2 \ times m(1,1)$的直接产品。两种几何形状都有恒定的标态曲率。我们考虑了一种场景,在这种情况下,横向测量坐标的初始速度设置为零(在脉冲到达之前),该时空在具有非变化背景曲率的时空中设置为零。我们寻找由脉冲引起的大地测量对之间的分离的变化。在爆发后,在地球学的位置和速度曲线中观察到的任何相对变化都可以仅归因于波(因此,记忆效应)。对于恒定的负曲率,我们发现脉冲离开后的大地测量分离存在永久变化。因此,尽管找不到速度内存,但仍存在位移内存。在恒定的正标曲率曲率(Plebański-Hacyan Pacetime)的情况下,我们发现位移和速度记忆沿一个方向。在另一个方向上,观察到一种新型的内存(我们称为频率记忆效应),其中大地测量学之间的分离一旦脉冲离开,则显示周期性振荡。我们还对具有非恒定标量曲率的空间进行了类似的分析,这可能是正面的或负的。这里的结果似乎与恒定标态曲率的质量依赖,从而提出了记忆性质与曲率之间的联系。
Memory effects in the exact Kundt wave spacetimes are shown to arise in the behaviour of geodesics in such spacetimes. The types of Kundt spacetimes we consider here are direct products of the form $H^2\times M(1,1)$ and $S^2\times M(1,1)$. Both geometries have constant scalar curvature. We consider a scenario in which initial velocities of the transverse geodesic coordinates are set to zero (before the arrival of the pulse) in a spacetime with non-vanishing background curvature. We look for changes in the separation between pairs of geodesics caused by the pulse. Any relative change observed in the position and velocity profiles of geodesics, after the burst, can be solely attributed to the wave (hence, a memory effect). For constant negative curvature, we find there is permanent change in the separation of geodesics after the pulse has departed. Thus, there is displacement memory, though no velocity memory is found. In the case of constant positive scalar curvature (Plebański-Hacyan spacetimes), we find both displacement and velocity memory along one direction. In the other direction, a new kind of memory (which we term as frequency memory effect) is observed where the separation between the geodesics shows periodic oscillations once the pulse has left. We also carry out similar analyses for spacetimes with a non-constant scalar curvature, which may be positive or negative. The results here seem to qualitatively agree with those for constant scalar curvature, thereby suggesting a link between the nature of memory and curvature.