论文标题
常规的多边形最大程度地减少了在阳性拉格马尼亚上拔出坐标的比率
The Regular Polygon Minimizes The Ratio of Plucker Coordinates on The Positive Grassmannian
论文作者
论文摘要
对于$ \ mathbb {r}^n $的二维子空间的积极grassmannian的点$ x $,将损失函数$ e(x)$定义为其最大和最小的plucker坐标的比率。我们解决了将损失功能$ e(x)$降低的极端问题。这个最小问题是由Berman等人提出的。在他们的关于错误校正代码上的论文中。
For a point $x$ on the Positive Grassmannian of two-dimensional subspaces in $\mathbb{R}^n$, define the loss function $E(x)$ as the ratio of its largest and smallest Plucker coordinates. We solve the extremal problem of minimizing the loss function $E(x)$ over the Grassmannian. This minimax problem was posed by Berman, et al. in their paper on error-correcting codes over the real numbers.