论文标题
PipelineProfiler:一种探索汽车管道的视觉分析工具
PipelineProfiler: A Visual Analytics Tool for the Exploration of AutoML Pipelines
论文作者
论文摘要
近年来,已经提出了各种各样的自动化机器学习(AUTOML)方法来搜索和生成端到端的学习管道。尽管这些技术有助于为现实世界应用创建模型,但鉴于其黑盒的性质,基础算法的复杂性以及它们得出的大量管道的复杂性,他们的开发人员很难调试这些系统。对于机器学习专家来说,选择一个非常适合给定问题或类别的问题的汽车系统也是一项挑战。在本文中,我们介绍了PipelineProfiler,这是一种交互式可视化工具,允许对Automl Systems生产的机器学习解决方案(ML)管道的解决方案空间进行探索和比较。 PipelineProfiler与Jupyter Notebook集成在一起,可以与常见的数据科学工具一起使用,以实现对ML管道的丰富分析,并提供有关生成它们的算法的见解。我们通过几种用例证明了工具的实用性,这些用例使用PipelineProfiler来更好地理解和改善现实世界中的汽车系统。此外,我们通过与六个开发和评估汽车工具的数据科学家进行了思考实验的详细分析来验证我们的方法。
In recent years, a wide variety of automated machine learning (AutoML) methods have been proposed to search and generate end-to-end learning pipelines. While these techniques facilitate the creation of models for real-world applications, given their black-box nature, the complexity of the underlying algorithms, and the large number of pipelines they derive, it is difficult for their developers to debug these systems. It is also challenging for machine learning experts to select an AutoML system that is well suited for a given problem or class of problems. In this paper, we present the PipelineProfiler, an interactive visualization tool that allows the exploration and comparison of the solution space of machine learning (ML) pipelines produced by AutoML systems. PipelineProfiler is integrated with Jupyter Notebook and can be used together with common data science tools to enable a rich set of analyses of the ML pipelines and provide insights about the algorithms that generated them. We demonstrate the utility of our tool through several use cases where PipelineProfiler is used to better understand and improve a real-world AutoML system. Furthermore, we validate our approach by presenting a detailed analysis of a think-aloud experiment with six data scientists who develop and evaluate AutoML tools.