论文标题

通过中间近似图中图中有效的嘈杂二进制搜索

An Efficient Noisy Binary Search in Graphs via Median Approximation

论文作者

Dereniowski, Dariusz, Łukasiewicz, Aleksander, Uznański, Przemysław

论文摘要

考虑将经典二进制搜索问题在线性排序的数据中概括为图理论设置。目的是设计一种称为策略的自适应查询算法,该算法通过询问查询来标识图中最初未知的目标顶点。每个查询的进行如下:该策略选择一个顶点$ q $并收到答复$ v $:如果$ q $是目标,则$ v = q $,如果$ q $不是目标,则$ v $是$ q $的邻居,$ q $是最短的目标路径。此外,还有一个噪声参数$ 0 \ leq p <\ frac {1} {2} $,这意味着每个答复都可能与概率$ p $不正确。要最小化的优化标准是该策略所要求的查询总数,称为查询复杂性。查询复杂性被很好地理解为$ o(\ varepsilon^{ - 2} \ log n)$对于一般图形,其中$ n $是图形的顺序,$ \ varepsilon = \ frac {1} {1} {2} {2} {2} -p $。但是,实施这种策略在计算上是昂贵的,每个查询都需要$ o(n^2)$操作。 在这项工作中,我们提出了两种有效的策略,以保持最佳查询复杂性。第一种策略实现了$ o(\ varepsilon^{ - 1} n \ log n)$的总体复杂性。第二个策略是专门用于小直径$ d $和最高度$δ$的图表,并且平均复杂度为$ O(n+\ varepsilon^{ - 2}dδ\ log n)$每个查询。我们强调,我们开发了具有独立感兴趣的图中值近似的算法工具:可以通过找到将距离的总和最小化到随机采样的顶点$ o(\ varepsilon^{ - 2}} \ log n)$来有效地近似的中位数。

Consider a generalization of the classical binary search problem in linearly sorted data to the graph-theoretic setting. The goal is to design an adaptive query algorithm, called a strategy, that identifies an initially unknown target vertex in a graph by asking queries. Each query is conducted as follows: the strategy selects a vertex $q$ and receives a reply $v$: if $q$ is the target, then $v=q$, and if $q$ is not the target, then $v$ is a neighbor of $q$ that lies on a shortest path to the target. Furthermore, there is a noise parameter $0\leq p<\frac{1}{2}$, which means that each reply can be incorrect with probability $p$. The optimization criterion to be minimized is the overall number of queries asked by the strategy, called the query complexity. The query complexity is well understood to be $O(\varepsilon^{-2}\log n)$ for general graphs, where $n$ is the order of the graph and $\varepsilon=\frac{1}{2}-p$. However, implementing such a strategy is computationally expensive, with each query requiring possibly $O(n^2)$ operations. In this work we propose two efficient strategies that keep the optimal query complexity. The first strategy achieves the overall complexity of $O(\varepsilon^{-1}n\log n)$ per a single query. The second strategy is dedicated to graphs of small diameter $D$ and maximum degree $Δ$ and has the average complexity of $O(n+\varepsilon^{-2}DΔ\log n)$ per query. We stress out that we develop an algorithmic tool of graph median approximation that is of independent interest: the median can be efficiently approximated by finding a vertex minimizing the sum of distances to a randomly sampled vertex subset of size $O(\varepsilon^{-2}\log n)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源