论文标题
扁平托里的几乎最佳嵌入
Nearly Optimal Embeddings of Flat Tori
论文作者
论文摘要
我们表明,对于任何$ n $二维的晶格$ \ MATHCAL {l} \ subseteq \ Mathbb {r}^n $,torus $ \ mathbb {r}^n/\ mathcal {l} $可以嵌入$ o(\ o(可以嵌入$ o)中。这改善了$ o(n \ sqrt {\ log n})$的先前最著名的上限,由Haviv and Regev(大约2010年)显示,并接近$ω(\ sqrt {n})$的下限,这是由于Khot and Naor引起的(FOCS 2005,MATH。annal。Annal。2006)。
We show that for any $n$-dimensional lattice $\mathcal{L} \subseteq \mathbb{R}^n$, the torus $\mathbb{R}^n/\mathcal{L}$ can be embedded into Hilbert space with $O(\sqrt{n\log n})$ distortion. This improves the previously best known upper bound of $O(n\sqrt{\log n})$ shown by Haviv and Regev (APPROX 2010) and approaches the lower bound of $Ω(\sqrt{n})$ due to Khot and Naor (FOCS 2005, Math. Annal. 2006).