论文标题

使用复发自动编码器进行时间序列参数化的数据空间反演

Data-Space Inversion Using a Recurrent Autoencoder for Time-Series Parameterization

论文作者

Jiang, Su, Durlofsky, Louis J.

论文摘要

数据空间反转(DSI)和相关过程代表了适用于地下流设置中数据同化的方法系列。这些方法与基于模型的技术有所不同,因为它们仅提供对量的数量(时间序列)的后验预测,而不是具有校准参数的后验模型。 DSI方法需要大量的流程模拟才能首先在先前的地质实现上进行。给定观察到的数据,然后可以直接生成后验预测。 DSI在贝叶斯环境中运行,并提供数据向量的后验样本。在这项工作中,我们开发并评估了DSI中数据参数化的新方法。参数化减少了在反转中确定的变量数量,并维护数据变量的物理特征。新的参数化使用复发自动编码器(RAE)来减少尺寸,并使用长期记忆(LSTM)网络来表示流率时间序列。基于RAE的参数化与集合更光滑,具有多个数据同化(ESMDA),用于后期生成。在2D通道系统和3D多高斯模型中,对两相和三相流进行了结果。 RAE程序以及现有的DSI治疗方法是通过与参考排斥采样(RS)结果进行比较来评估的。根据统计协议,新的DSI方法可以始终超过现有方法。该方法还显示可准确捕获衍生的数量,这些数量是从直接在DSI中考虑的变量计算得出的。这需要正确捕获变量之间的相关性和协方差,并证明了这些关系的准确性。此处开发的基于RAE的参数化显然在DSI中很有用,并且还可以在其他地下流问题中找到应用。

Data-space inversion (DSI) and related procedures represent a family of methods applicable for data assimilation in subsurface flow settings. These methods differ from model-based techniques in that they provide only posterior predictions for quantities (time series) of interest, not posterior models with calibrated parameters. DSI methods require a large number of flow simulations to first be performed on prior geological realizations. Given observed data, posterior predictions can then be generated directly. DSI operates in a Bayesian setting and provides posterior samples of the data vector. In this work we develop and evaluate a new approach for data parameterization in DSI. Parameterization reduces the number of variables to determine in the inversion, and it maintains the physical character of the data variables. The new parameterization uses a recurrent autoencoder (RAE) for dimension reduction, and a long-short-term memory (LSTM) network to represent flow-rate time series. The RAE-based parameterization is combined with an ensemble smoother with multiple data assimilation (ESMDA) for posterior generation. Results are presented for two- and three-phase flow in a 2D channelized system and a 3D multi-Gaussian model. The RAE procedure, along with existing DSI treatments, are assessed through comparison to reference rejection sampling (RS) results. The new DSI methodology is shown to consistently outperform existing approaches, in terms of statistical agreement with RS results. The method is also shown to accurately capture derived quantities, which are computed from variables considered directly in DSI. This requires correlation and covariance between variables to be properly captured, and accuracy in these relationships is demonstrated. The RAE-based parameterization developed here is clearly useful in DSI, and it may also find application in other subsurface flow problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源