论文标题

apo-vae:双曲线空间中的文本生成

APo-VAE: Text Generation in Hyperbolic Space

论文作者

Dai, Shuyang, Gan, Zhe, Cheng, Yu, Tao, Chenyang, Carin, Lawrence, Liu, Jingjing

论文摘要

自然语言通常表现出固有的层次结构,这些结构以复杂的语法和语义为基础。但是,大多数最先进的深层生成模型仅在欧几里得向量空间中学习嵌入,而无需考虑这种语言的结构属性。在本文中,我们研究了双曲线潜在空间中的文本生成,以学习连续的层次表示。提出了对抗性的繁殖变量自动编码器(apo-vae),其中潜在变量的先前和变异后验通过包裹的正常​​分布在庞加雷球上定义。通过采用KL Divergence的原始偶对偶的表述,引入了对抗性学习程序,以增强强大的模型训练。语言建模和对话响应生成任务的广泛实验证明了拟议的APO-VAE模型对欧几里得潜在空间中VAE的胜利有效性,这要归功于其在双曲空间中捕获潜在语言层次结构的出色能力。

Natural language often exhibits inherent hierarchical structure ingrained with complex syntax and semantics. However, most state-of-the-art deep generative models learn embeddings only in Euclidean vector space, without accounting for this structural property of language. In this paper, we investigate text generation in a hyperbolic latent space to learn continuous hierarchical representations. An Adversarial Poincare Variational Autoencoder (APo-VAE) is presented, where both the prior and variational posterior of latent variables are defined over a Poincare ball via wrapped normal distributions. By adopting the primal-dual formulation of KL divergence, an adversarial learning procedure is introduced to empower robust model training. Extensive experiments in language modeling and dialog-response generation tasks demonstrate the winning effectiveness of the proposed APo-VAE model over VAEs in Euclidean latent space, thanks to its superb capabilities in capturing latent language hierarchies in hyperbolic space.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源