论文标题
非本地纠缠和快速争夺DE特性全息图
Non-local Entanglement and Fast Scrambling in De-Sitter Holography
论文作者
论文摘要
我们在DS/DS对应关系的背景下研究全息纠缠和信息在DE设备(DS)空间中的争夺。我们发现,我们先前确定的DS真空的非本地纠缠结构可以从时间反射对称切片中扩展。我们将几何形状扩展到双面配置,并在大体中有局部冲击波时在不同侧的两个间隔之间计算零时间互信息。有趣的是,我们发现,拼凑时间的信息使Sekino和Susskind提出的快速拼凑而成,冲击波使虫洞呈蠕虫,以至于可以遍历。此外,我们在晚期制度中计算了一个双面超时的相关器(OTOC),我们看到,在争先恐后地,它以指数呈指数增长,其值饱和,该指数饱和,该指数饱和,其值饱和,由Maldacena,Shenker和Shenker和Stanford提出的Chaos的最大结合。最后,我们提供了一个解释,为什么延迟时间OTOC的指数生长具有混乱饱和的最大结合以及虫洞的穿齿性是非本地纠缠结构的简单结果,并指出这是ER = EPR建议的实现。
We study holographic entanglement and information scrambling in de-Sitter (dS) space in the context of the DS/dS correspondence. We find that our previously identified non-local entanglement structure of dS vacua can be extended out of the time-reflection symmetric slice. We extend the geometry to a two-sided configuration and calculate the zero-time mutual information between two intervals on different sides when there is a localized shock wave in the bulk. Interestingly, we find that the information scrambling time saturates the fast scrambler bound proposed by Sekino and Susskind and that the shock wave renders a wormhole to be traversable. Furthermore, we calculate a two-sided out-of-time-ordered correlator (OTOC) in the late time regime and we see that, before scrambling, it exponentially grows with an exponent whose value saturates the maximal bound of chaos proposed by Maldacena, Shenker and Stanford. At the end, we provide an explanation why the exponential growing of the late-time OTOC with the maximal bound of chaos saturated and the traversability of the wormhole are simple results of the non-local entanglement structure and point out that this is a realization of the ER=EPR proposal.