论文标题

数据增强了使用Hammett方程的化学空间中的反应预测

Data Enhanced Reaction Predictions in Chemical Space With Hammett's Equation

论文作者

Bragato, Marco, von Rudorff, Guido Falk, von Lilienfeld, O. Anatole

论文摘要

通过将取代基的影响与化学过程变量(例如反应机制,溶剂或温度)分开,Hammett方程可以控制整个化学空间的化学反应性。我们使用全球回归来优化两个数据集中的Hammett参数$ρ$和$σ$,与硫醇反应的二唑溴化物的实验速率常数和铵盐的分解以及一个由$ \ sim $ \ sim $ s_n2 $ eactions的计算激活能量的合成数据集,以及 - $ s_n2 $ ceptions,以及 - 群体,以及 - 属于nuctermiles-frels-frel -class-(剩下),并留下 - 函数组(-h,-no $ _2 $,-cn,-nh $ _3 $,-CH $ _3 $)。原始方法被推广以预测具有多种取代基的非芳香族分子支架中激活的势能。单个取代基对具有唯一回归项的分子$σ$添加贡献,从而量化了电感效应。此外,取代基的位置依赖性可以用$ s_n2 $的距离衰减因子代替。将Hammett方程用作化学空间中激活能量$δ$的学习模型的基线模型,从而为小型训练集大小带来了大大改善的学习曲线。

By separating the effect of substituents from chemical process variables, such as reaction mechanism, solvent, or temperature, the Hammett equation enables control of chemical reactivity throughout chemical space. We used global regression to optimize Hammett parameters $ρ$ and $σ$ in two datasets, experimental rate constants for benzylbromides reacting with thiols and the decomposition of ammonium salts, and a synthetic dataset consisting of computational activation energies of $\sim$ 1400 $S_N2$ reactions, with various nucleophiles and leaving groups (-H, -F, -Cl, -Br) and functional groups (-H, -NO$_2$, -CN, -NH$_3$, -CH$_3$). The original approach is generalized to predict potential energies of activation in non aromatic molecular scaffolds with multiple substituents. Individual substituents contribute additively to molecular $σ$ with a unique regression term, which quantifies the inductive effect. Moreover, the position dependence of the substituent can be replaced by a distance decaying factor for $S_N2$. Use of the Hammett equation as a base-line model for $Δ$-Machine learning models of the activation energy in chemical space results in substantially improved learning curves for small training set sizes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源