论文标题
神经机器翻译中遥远域适应的词汇适应
Vocabulary Adaptation for Distant Domain Adaptation in Neural Machine Translation
论文作者
论文摘要
神经网络方法仅在少数资源丰富的域中表现出很强的性能。因此,从业人员采用了来自资源丰富的域的域适应,这些域在大多数情况下都远离了目标域。但是,由于词汇量的不匹配,遥远的域(例如,电影字幕和研究论文)之间的域适应性无法有效地执行;它将遇到许多特定领域的单词(例如,“ Angstrom”)和含义跨域(例如“指挥”)的单词。在这项研究中,旨在解决这些词汇不匹配的神经机器翻译(NMT)的词汇不匹配,我们提出了词汇适应性,这是一种有效微调的简单方法,可将嵌入层嵌入给定的预训练的NMT模型中的嵌入层嵌入到目标域中。在进行微调之前,我们的方法通过投影从目标域中的单语言数据引起的一般单词嵌入来代替NMT模型的嵌入层,直到源域嵌入空间上。实验结果表明,我们的方法分别在en-ja和de-en翻译中分别提高了常规微调的性能。
Neural network methods exhibit strong performance only in a few resource-rich domains. Practitioners, therefore, employ domain adaptation from resource-rich domains that are, in most cases, distant from the target domain. Domain adaptation between distant domains (e.g., movie subtitles and research papers), however, cannot be performed effectively due to mismatches in vocabulary; it will encounter many domain-specific words (e.g., "angstrom") and words whose meanings shift across domains(e.g., "conductor"). In this study, aiming to solve these vocabulary mismatches in domain adaptation for neural machine translation (NMT), we propose vocabulary adaptation, a simple method for effective fine-tuning that adapts embedding layers in a given pre-trained NMT model to the target domain. Prior to fine-tuning, our method replaces the embedding layers of the NMT model by projecting general word embeddings induced from monolingual data in a target domain onto a source-domain embedding space. Experimental results indicate that our method improves the performance of conventional fine-tuning by 3.86 and 3.28 BLEU points in En-Ja and De-En translation, respectively.