论文标题

雨:一种可靠和准确的图像分类网络的简单方法

RAIN: A Simple Approach for Robust and Accurate Image Classification Networks

论文作者

Du, Jiawei, Yan, Hanshu, Tan, Vincent Y. F., Zhou, Joey Tianyi, Goh, Rick Siow Mong, Feng, Jiashi

论文摘要

已经表明,大多数现有的对抗防御方法以牺牲预测准确性为代价实现了鲁棒性。准确性的严重下降不利地影响了机器学习算法的可靠性,并禁止其在现实应用中的部署。本文旨在通过提出一个新颖的预处理框架来解决这一难题,我们将其称为鲁棒和准确的图像分类(RAIN),以改善给定的CNN分类器的鲁棒性,同时保留其高预测准确性。 Rain引入了一种新的随机增强方案。它对输入进行随机化,以打破模型正向预测路径和向后梯度路径之间的关系,从而改善了模型的鲁棒性。但是,类似于现有的基于预处理的方法,随机过程将降低预测准确性。为了了解为什么是这种情况,我们比较了原始图像和处理的图像之间的差异,并发现输入图像中高频组件的丢失导致分类器的准确性下降。基于这一发现,RAIN增强了输入的高频细节,以保留CNN的高预测准确性。具体而言,雨水由两个新型的随机化模块组成:随机的小圆形移位(RDMSC)和随机向上采样(RDMDU)。 RDMDU模块随机缩小输入图像,然后rdmscs模块循环将输入图像沿随机选择的方向移动,然后通过少量但随机的像素数。最后,RDMDU模块通过详细增强模型(例如深度超分辨率网络)执行更高的采样。我们在STL10和Imagenet数据集上进行了广泛的实验,以验证降雨对各种类型的对抗攻击的有效性。

It has been shown that the majority of existing adversarial defense methods achieve robustness at the cost of sacrificing prediction accuracy. The undesirable severe drop in accuracy adversely affects the reliability of machine learning algorithms and prohibits their deployment in realistic applications. This paper aims to address this dilemma by proposing a novel preprocessing framework, which we term Robust and Accurate Image classificatioN(RAIN), to improve the robustness of given CNN classifiers and, at the same time, preserve their high prediction accuracies. RAIN introduces a new randomization-enhancement scheme. It applies randomization over inputs to break the ties between the model forward prediction path and the backward gradient path, thus improving the model robustness. However, similar to existing preprocessing-based methods, the randomized process will degrade the prediction accuracy. To understand why this is the case, we compare the difference between original and processed images, and find it is the loss of high-frequency components in the input image that leads to accuracy drop of the classifier. Based on this finding, RAIN enhances the input's high-frequency details to retain the CNN's high prediction accuracy. Concretely, RAIN consists of two novel randomization modules: randomized small circular shift (RdmSCS) and randomized down-upsampling (RdmDU). The RdmDU module randomly downsamples the input image, and then the RdmSCS module circularly shifts the input image along a randomly chosen direction by a small but random number of pixels. Finally, the RdmDU module performs upsampling with a detail-enhancement model, such as deep super-resolution networks. We conduct extensive experiments on the STL10 and ImageNet datasets to verify the effectiveness of RAIN against various types of adversarial attacks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源