论文标题
Ampers:挖掘有说服力的在线讨论的论点
AMPERSAND: Argument Mining for PERSuAsive oNline Discussions
论文作者
论文摘要
论点是一种话语,演讲者试图通过提出支持的论点来说服听众关于主张的合理性。挖掘中的大多数工作都集中在独白中的论证上。我们为在线说服性讨论论坛中提出了一个用于参数挖掘的计算模型,该论坛将微观级别(参数为产品)和宏观级别(参数作为过程)论证模型汇集在一起。从根本上讲,这种方法依赖于在讨论线程中确定参数组成部分之间的关系。我们的关系预测方法使用上下文信息来微调预训练的语言模型并利用基于修辞结构理论的话语关系。我们还提出了一种候选选择方法,以自动预测讨论中其他参与者将针对一个人的论点的哪些部分。与使用指针网络和预先训练的语言模型相比,我们的模型获得了重大改进。
Argumentation is a type of discourse where speakers try to persuade their audience about the reasonableness of a claim by presenting supportive arguments. Most work in argument mining has focused on modeling arguments in monologues. We propose a computational model for argument mining in online persuasive discussion forums that brings together the micro-level (argument as product) and macro-level (argument as process) models of argumentation. Fundamentally, this approach relies on identifying relations between components of arguments in a discussion thread. Our approach for relation prediction uses contextual information in terms of fine-tuning a pre-trained language model and leveraging discourse relations based on Rhetorical Structure Theory. We additionally propose a candidate selection method to automatically predict what parts of one's argument will be targeted by other participants in the discussion. Our models obtain significant improvements compared to recent state-of-the-art approaches using pointer networks and a pre-trained language model.