论文标题

SU(3)Chern-Simons模型中的无穷大爆炸,第一部分

Blow up at infinity in the SU(3) Chern-Simons model, part I

论文作者

Kuo, Ting-Jung, Lee, Youngae, Lin, Chang-Shou

论文摘要

我们考虑了从$ \ Mathbb {r}^2 $中的$ su(3)$ chern-simons型号得出的非线性椭圆系统问题的非探针解决方案。即使对于径向对称情况,非本质解决方案的存在一直是一个长期存在的开放问题。最近,[Choe,Kim,Lin(2015,2016)]在涡旋点崩溃时显示了径向对称的非平原解。但是,[Choe,Kim,Lin(2015,2016)]中的论点不能用于对涡旋点的任意配置。在本文中,我们通过为系统的不同组件使用不同的量表来开发一种新方法,以构建一个在无穷大时吹来的非探针解决方案家族。

We consider non-topological solutions of a nonlinear elliptic system problem derived from the $SU(3)$ Chern-Simons models in $\mathbb{R}^2$. The existence of non-topological solutions even for radial symmetric case has been a long standing open problem. Recently, [Choe, Kim, Lin (2015, 2016)] showed the existence of radial symmetric non-topological solution when the vortex points collapse. However, the arguments in [Choe, Kim, Lin (2015, 2016)] cannot work for an arbitrary configuration of vortex points. In this paper, we develop a new approach by using different scalings for different components of the system to construct a family of non-topological solutions, which blows up at infinity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源