论文标题

RGB-D显着对象检测的双边注意网络

Bilateral Attention Network for RGB-D Salient Object Detection

论文作者

Zhang, Zhao, Lin, Zheng, Xu, Jun, Jin, Wenda, Lu, Shao-Ping, Fan, Deng-Ping

论文摘要

使用深度图像时,大多数现有的RGB-D显着对象检测(SOD)方法集中在前景区域。但是,背景还提供了传统的SOD方法中的重要信息,以实现有希望的性能。为了更好地探索前景和背景区域中的显着信息,本文提出了针对RGB-D SOD任务的双边注意网络(BIANET)。具体而言,我们引入了具有互补注意机制的双边注意模块(BAM):前景优先(FF)注意力和背景优先(BF)注意力。 FF的注意力集中在前景区域的逐渐改进样式上,而BF则恢复了背景区域中潜在有用的显着信息。我们的双net受益于拟议的BAM模块,可以捕获更有意义的前景和背景提示,并将更多的注意力转移到完善前景区域和背景区域之间的不确定细节。此外,我们通过利用多尺度技术来提高SOD性能来扩展BAM。在六个基准数据集上进行的广泛实验表明,就客观指标和主观的视觉比较而言,我们的双手比其他最先进的RGB-D SOD方法优于其他最先进的RGB-D SOD方法。我们的双人室可以以$ 224 \ times224 $ rgb-d图像运行80fps,并带有NVIDIA GEFORCE RTX 2080TI GPU。全面的消融研究也验证了我们的贡献。

Most existing RGB-D salient object detection (SOD) methods focus on the foreground region when utilizing the depth images. However, the background also provides important information in traditional SOD methods for promising performance. To better explore salient information in both foreground and background regions, this paper proposes a Bilateral Attention Network (BiANet) for the RGB-D SOD task. Specifically, we introduce a Bilateral Attention Module (BAM) with a complementary attention mechanism: foreground-first (FF) attention and background-first (BF) attention. The FF attention focuses on the foreground region with a gradual refinement style, while the BF one recovers potentially useful salient information in the background region. Benefitted from the proposed BAM module, our BiANet can capture more meaningful foreground and background cues, and shift more attention to refining the uncertain details between foreground and background regions. Additionally, we extend our BAM by leveraging the multi-scale techniques for better SOD performance. Extensive experiments on six benchmark datasets demonstrate that our BiANet outperforms other state-of-the-art RGB-D SOD methods in terms of objective metrics and subjective visual comparison. Our BiANet can run up to 80fps on $224\times224$ RGB-D images, with an NVIDIA GeForce RTX 2080Ti GPU. Comprehensive ablation studies also validate our contributions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源