论文标题

关于解决分支和切割的周期问题:扩展缩小和确切的亚周分离算法

On Solving Cycle Problems with Branch-and-Cut: Extending Shrinking and Exact Subcycle Elimination Separation Algorithms

论文作者

Kobeaga, Gorka, Merino, María, Lozano, Jose A.

论文摘要

在本文中,我们扩展了在旅行销售人员问题的背景下为周期问题开发的技术。特别是,我们研究了支持图的收缩和次循环分离问题的确切算法。在通过分支切割解决大型问题时,事实证明,经过考虑的技术的有效应用在旅行销售人员问题中至关重要,这一直是这项工作的动机。关于支持图的收缩,我们证明了Padberg-Rinaldi一般缩水规则和Crowder-Padberg subcrecle-Save缩小规则的有效性。关于亚周分离问题,我们扩展了两种精确的分离算法,即动态的Hong和扩展的Padbergötschel算法,这些算法被证明比迄今为止在循环问题文献中使用的算法优于迄今为止使用的算法。 通过分支和切割解决定向呼吸问题(最多涉及15112个顶点),在24个亚周期消除问题实例中对所提出的技术进行了经验测试。实验表明所提出的技术与循环问题的相关性。当提出的技术一起使用时,在中型技术中使用的次周分离问题的平均速度约为50次,在大型实例中约为250次。

In this paper, we extend techniques developed in the context of the Travelling Salesperson Problem for cycle problems. Particularly, we study the shrinking of support graphs and the exact algorithms for subcycle elimination separation problems. The efficient application of the considered techniques has proved to be essential in the Travelling Salesperson Problem when solving large size problems by Branch-and-Cut, and this has been the motivation behind this work. Regarding the shrinking of support graphs, we prove the validity of the Padberg-Rinaldi general shrinking rules and the Crowder-Padberg subcycle-safe shrinking rules. Concerning the subcycle separation problems, we extend two exact separation algorithms, the Dynamic Hong and the Extended Padberg-Grötschel algorithms, which are shown to be superior to the ones used so far in the literature of cycle problems. The proposed techniques are empirically tested in 24 subcycle elimination problem instances generated by solving the Orienteering Problem (involving up to 15112 vertices) with Branch-and-Cut. The experiments suggest the relevance of the proposed techniques for cycle problems. The obtained average speedup for the subcycle separation problems in the Orienteering Problem when the proposed techniques are used together is around 50 times in medium-sized instances and around 250 times in large-sized instances.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源