论文标题

Lipschitz域上Sobolev空间的微量运营商的内核

Kernel of Trace Operator of Sobolev Spaces on Lipschitz Domain

论文作者

Hu, I-Shing

论文摘要

We are going to show that on bounded Lipschitz domain $D$: both $C_{c}^{\infty}(D)$, the set of smooth functions on $D$ with compact support, and $C_{0}^{\infty}(D)$, the set of smooth functions on $D$ with (extension) zero boundary, are dense in $ w^{1,p} \ left(d \ right)$,$ p \ in [1,\ infty)$。可以在Nečas的专着\ Cite {Key-2},定理4.10,§2.4.3中找到证明。 我们注意到这一点的主要结果是:我们通过证明两个封闭方式与跟踪操作员的内核相同,$ t:\,w^{1,p}(d)(d)\ rightArrow l^{p}(\ partial d)$通过evans和gariepy textboop的变量的一些变化来延长coite \ cite-cite formitation formination formination forrestion {在Evans广泛的PDE教科书\ cite {key-3}的第5.5节中,从$ \ Mathcal {C}^{1} $到Lipschitz域。

We are going to show that on bounded Lipschitz domain $D$: both $C_{c}^{\infty}(D)$, the set of smooth functions on $D$ with compact support, and $C_{0}^{\infty}(D)$, the set of smooth functions on $D$ with (extension) zero boundary, are dense in $W^{1,p}\left(D\right)$, $p\in[1,\infty)$. A proof can be found in Nečas's monograph \cite{key-2}, Theorem 4.10, §2.4.3. Our main result in this note is that: we find another proof by showing that both closures is the same as kernel of trace operator $T:\,W^{1,p}(D)\rightarrow L^{p}(\partial D)$ via some change of variables formulas from Evans and Gariepy's textbook \cite{key-4} for Lipschitz coordinate transformation, to extend the proof of Theorem 2 in §5.5 of Evans' widespread PDE textbook \cite{key-3}, from $\mathcal{C}^{1}$ to Lipschitz domain.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源