论文标题
与时间相关的旅行时间和路径的电弧路由
Arc Routing with Time-Dependent Travel Times and Paths
论文作者
论文摘要
车辆路由算法通常将道路网络重新整理成一个完整的图,在该图中,每个弧表示两个位置之间的最短路径。有关时间依赖性路由的研究遵循该模型,因此定义了完整图上的速度函数。我们认为,这种模型通常不足,特别是对于涉及道路网络边缘服务的电弧路由问题。为了填补这一空白,我们正式定义了时间相关的电容弧路由问题(TDCARP),并使用直接在网络级别给出的行进和服务速度功能。在这些假设下,位置之间的最快路径可能会随着时间而变化,从而导致一个复杂的问题,挑战了当前解决方案方法的能力。我们引入了有效的算法,用于预处理封闭形式的最快路径,有效的数据结构,用于路由优化过程中的旅行时间查询,以及用于TDCARP的启发式和精确的解决方案方法。我们的启发式方法将杂种遗传搜索原理与定制的溶液描述算法和下限进行过滤移动。我们的分支机构和价格算法利用专用定价程序,启发式优势规则和完成范围,以找到最佳问题的最佳解决方案。基于这些算法,我们衡量了对于不同级别的旅行速度数据准确性的时间相关路由优化的好处。
Vehicle routing algorithms usually reformulate the road network into a complete graph in which each arc represents the shortest path between two locations. Studies on time-dependent routing followed this model and therefore defined the speed functions on the complete graph. We argue that this model is often inadequate, in particular for arc routing problems involving services on edges of a road network. To fill this gap, we formally define the time-dependent capacitated arc routing problem (TDCARP), with travel and service speed functions given directly at the network level. Under these assumptions, the quickest path between locations can change over time, leading to a complex problem that challenges the capabilities of current solution methods. We introduce effective algorithms for preprocessing quickest paths in a closed form, efficient data structures for travel time queries during routing optimization, as well as heuristic and exact solution approaches for the TDCARP. Our heuristic uses the hybrid genetic search principle with tailored solution-decoding algorithms and lower bounds for filtering moves. Our branch-and-price algorithm exploits dedicated pricing routines, heuristic dominance rules and completion bounds to find optimal solutions for problem counting up to 75 services. Based on these algorithms, we measure the benefits of time-dependent routing optimization for different levels of travel-speed data accuracy.