论文标题

纯重力和锥形缺陷

Pure Gravity and Conical Defects

论文作者

Benjamin, Nathan, Collier, Scott, Maloney, Alexander

论文摘要

我们重新审视ADS $ _3 $中纯量子重力的频谱。如果使用仅包含平滑鞍点的重力路径积分进行计算,则将圆环分区函数的计算导致一系列状态,而状态在物理上不明智,因为它具有某些能量和旋转的状态负面变化。我们认为,对于纯重力分区函数的这种非军事性的治疗方法最小,其中涉及在黑洞阈值下方包含其他状态。我们为这些额外状态提出了几何解释:它们是缺陷角度$2π(1-1/n)$的圆锥形缺陷,其中$ n $是一个正整数。从模块化的bootstrap参数可以看到只能包括$ n $的整数值,并导致我们提出对鞍点配置的适度扩展,这些配置有助于重力路径积分:除了光滑的歧管外,还应超过Orbifold。这些Orbifold状态在黑洞阈值以下,被认为是广告中的巨大颗粒,但它们不是扰动状态:它们太重而无法形成多粒子结合的状态。我们计算在这些Orbifold背景中重力的单循环决定因素,这证实了Orbifold状态是Virasoro的初选。我们计算重力分区函数,包括这些Orbifolds上的总和,并找到有限的模块化结果;这种有限性涉及在Orbifold状态的无限塔和与$ psl(2,{\ Mathbb Z})$图像相关的无限数量的Instantons之间的微妙取消。

We revisit the spectrum of pure quantum gravity in AdS$_3$. The computation of the torus partition function will -- if computed using a gravitational path integral that includes only smooth saddle points -- lead to a density of states which is not physically sensible, as it has a negative degeneracy of states for some energies and spins. We consider a minimal cure for this non-unitarity of the pure gravity partition function, which involves the inclusion of additional states below the black hole threshold. We propose a geometric interpretation for these extra states: they are conical defects with deficit angle $2π(1-1/N)$, where $N$ is a positive integer. That only integer values of $N$ should be included can be seen from a modular bootstrap argument, and leads us to propose a modest extension of the set of saddle-point configurations that contribute to the gravitational path integral: one should sum over orbifolds in addition to smooth manifolds. These orbifold states are below the black hole threshold and are regarded as massive particles in AdS, but they are not perturbative states: they are too heavy to form multi-particle bound states. We compute the one-loop determinant for gravitons in these orbifold backgrounds, which confirms that the orbifold states are Virasoro primaries. We compute the gravitational partition function including the sum over these orbifolds and find a finite, modular invariant result; this finiteness involves a delicate cancellation between the infinite tower of orbifold states and an infinite number of instantons associated with $PSL(2,{\mathbb Z})$ images.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源