论文标题
尺寸正则化和Breitenlohner-Maison /'T Hooft-Veltman计划适用于手性YM理论:完整的一环和RGE结构
Dimensional Regularization and Breitenlohner-Maison / 't Hooft-Veltman Scheme for $γ_5$ applied to Chiral YM Theories: Full One-Loop Counterterm and RGE Structure
论文作者
论文摘要
我们研究Breitenlohner-Maison-Maison-Maison-Maison-Maison-Maison-veltman(BMHV)方案的尺寸正则化方案在手性量规理论的重新规定中的应用,重点介绍了非通用的dirac $γ_5$ Matrix和BRST Invariance的特定的反时结构。计算是在带有手性费米子和真实标量场的无质心阳性理论中在一环级别进行的。我们会详细讨论正规化理论的设置和属性。我们的中心结果是正确的重新归化所需的完整的反式结构:奇异的紫外线反应,包括必须保留的逃生反反转,以保持高环计算的一致性。 我们发现,与矢量和标量场相关的所需的奇异,逃生的反应是唯一确定的,但不是不变的。此外,使用代数重新归一化的框架,我们确定对称性恢复有限的对抗,这些反对者需要恢复BRST不变性,这是该理论一致性的核心。这些是一环和高阶计算中必要的构建块。 最后,在此框架内得出了重归其化组方程,并将推导与在对称性不变的正规化背景下进行更习惯的计算进行比较。我们解释了为什么在一环级别上,额外的BMHV特异性对抗不会改变RGE的结果。在没有标量场的情况下,我们发现完成了先前在文献中获得的结果。
We study the application of the Breitenlohner-Maison-'t Hooft-Veltman (BMHV) scheme of Dimensional Regularization to the renormalization of chiral gauge theories, focusing on the specific counterterm structure required by the non-anticommuting Dirac $γ_5$ matrix and the breaking of the BRST invariance. Calculations are performed at the one-loop level in a massless chiral Yang-Mills theory with chiral fermions and real scalar fields. We discuss the setup and properties of the regularized theory in detail. Our central results are the full counterterm structures needed for the correct renormalization: the singular UV-divergent counterterms, including evanescent counterterms that have to be kept for consistency of higher-loop calculations. We find that the required singular, evanescent counterterms associated with vector and scalar fields are uniquely determined but are not gauge invariant. Furthermore, using the framework of algebraic renormalization, we determine the symmetry-restoring finite counterterms, that are required to restore the BRST invariance, central to the consistency of the theory. These are the necessary building blocks in one-loop and higher-order calculations. Finally, renormalization group equations are derived within this framework, and the derivation is compared with the more customary calculation in the context of symmetry-invariant regularizations. We explain why, at one-loop level, the extra BMHV-specific counterterms do not change the results for the RGE. The results we find complete those that have been obtained previously in the literature in the absence of scalar fields.