论文标题
使用热核标志可视化不稳定流动
Visualization of Unsteady Flow Using Heat Kernel Signatures
论文作者
论文摘要
我们引入了一种新技术,以使用形状分析中的概念来可视化复杂的流动现象。我们的方法使用的技术通过其热核检查了歧管的固有几何形状,以获取等静脉内不变和多尺度的这种歧管的表示。这些表示使我们能够计算该歧管上每个点的热核标志,我们可以将这些签名用作分类和分割的特征,以识别具有相似结构特性的点。 我们的方法通过制定形状的概念,使途径是观察到的高维空间中的多种流形的概念,从而适应了热核特征。 我们使用此空间来计算和可视化与每个途径相关的热内核标志。 除了能够捕获途径的结构特征外,热核特征还可以通过形状匹配的管道比较来自不同流数据集的路径。我们通过比较(1)从相同不稳定流量以及(2)从具有不同模拟参数的集合模拟中获取的(2)流量数据集的不同时间段来证明热核标志的分析能力。我们的分析仅需要途径本身,因此它不直接利用基础向量字段。我们对途径的假设最少:虽然我们假设它们是从连续,不稳定的流程中取样的,但我们的计算可以忍受具有不同密度和潜在未知边界的途径。我们通过可视化各种二维不稳定流量来评估我们的方法。
We introduce a new technique to visualize complex flowing phenomena by using concepts from shape analysis. Our approach uses techniques that examine the intrinsic geometry of manifolds through their heat kernel, to obtain representations of such manifolds that are isometry-invariant and multi-scale. These representations permit us to compute heat kernel signatures of each point on that manifold, and we can use these signatures as features for classification and segmentation that identify points that have similar structural properties. Our approach adapts heat kernel signatures to unsteady flows by formulating a notion of shape where pathlines are observations of a manifold living in a high-dimensional space. We use this space to compute and visualize heat kernel signatures associated with each pathline. Besides being able to capture the structural features of a pathline, heat kernel signatures allow the comparison of pathlines from different flow datasets through a shape matching pipeline. We demonstrate the analytic power of heat kernel signatures by comparing both (1) different timesteps from the same unsteady flow as well as (2) flow datasets taken from ensemble simulations with varying simulation parameters. Our analysis only requires the pathlines themselves, and thus it does not utilize the underlying vector field directly. We make minimal assumptions on the pathlines: while we assume they are sampled from a continuous, unsteady flow, our computations can tolerate pathlines that have varying density and potential unknown boundaries. We evaluate our approach through visualizations of a variety of two-dimensional unsteady flows.