论文标题

纠缠1+1维无压缩的玻色子结构理论的哈密顿量

Entanglement Hamiltonian of the 1+1-dimensional free, compactified boson conformal field theory

论文作者

Roy, Ananda, Pollmann, Frank, Saleur, Hubert

论文摘要

纠缠或模块化的汉密尔顿人在研究量子场理论的相关性中起着至关重要的作用。特别是,在1+1个时空维度中,某些几何形状的纠缠哈密顿式综合田间理论(CFTS)的光谱与相应边界CFT的物理哈密顿量的光谱有关。结果,共形不变性可以精确计算这些模型的纠缠哈密顿量的光谱。在这项工作中,我们在有限的空间间隔内对自由压缩的玻色子CFT进行了纠缠哈密顿量频谱的计算。我们使用密度矩阵重新分组组技术比较了连续理论获得的分析结果。为此,我们使用由约瑟夫森连接和电容器建造的超导量子电子电路提供的晶格正则化。直到晶格正则化引起的非宇宙效应,数值结果与确切计算的预测兼容。

Entanglement or modular Hamiltonians play a crucial role in the investigation of correlations in quantum field theories. In particular, in 1+1 space-time dimensions, the spectra of entanglement Hamiltonians of conformal field theories (CFTs) for certain geometries are related to the spectra of the physical Hamiltonians of corresponding boundary CFTs. As a result, conformal invariance allows exact computation of the spectra of the entanglement Hamiltonians for these models. In this work, we perform this computation of the spectrum of the entanglement Hamiltonian for the free compactified boson CFT over a finite spatial interval. We compare the analytical results obtained for the continuum theory with numerical simulations of a lattice-regularized model for the CFT using density matrix renormalization group technique. To that end, we use a lattice regularization provided by superconducting quantum electronic circuits, built out of Josephson junctions and capacitors. Up to non-universal effects arising due to the lattice regularization, the numerical results are compatible with the predictions of the exact computations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源