论文标题
双曲线随机步行的巨大偏差和逃逸速率
Large deviations and rate of escape for hyperbolic random walks
论文作者
论文摘要
让$γ$成为一个可数的群体,该群体作用于地球双曲线度量空间$ x $和$μ$的$γ$上的概率度量,该$γ$产生了非基本半组。在必要的假设是$μ$具有有限的指数时刻,我们为随机步行的距离建立了较大的偏差结果,并驾驶尺寸$μ$。
Let $Γ$ be a countable group acting on a geodesic hyperbolic metric space $X$ and $μ$ a probability measure on $Γ$ which generates a non elementary semi-group. Under the necessary assumption that $μ$ has a finite exponential moment, we establish large deviations results for the distance of a random walk with driving measure $μ$.