论文标题

傅立叶系数的欧拉尔体性形式的傅立叶系数

Eulerianity of Fourier coefficients of automorphic forms

论文作者

Gourevitch, Dmitry, Gustafsson, Henrik P. A., Kleinschmidt, Axel, Persson, Daniel, Sahi, Siddhartha

论文摘要

我们研究了自态形式的傅立叶系数的欧拉尔特性问题(因素方差),我们证明了一种一般的转移定理,该定理允许一个人从另一个系数中推断出某些系数的欧拉尔斯。我们还建立了傅立叶系数的“隐藏”不变性属性。我们将这些结果应用于最小和最小的自动形态表示,并针对大型傅立叶和傅里叶 - 雅各比系数推断出Eulerianity。特别是,我们证明了抛物线傅立叶系数的欧拉尔特性,具有最小的Eisenstein系列的特征,以最小值和近代的ADE型类型组的最小和最小表示,这是字符串理论中感兴趣的。

We study the question of Eulerianity (factorizability) for Fourier coefficients of automorphic forms, and we prove a general transfer theorem that allows one to deduce the Eulerianity of certain coefficients from that of another coefficient. We also establish a `hidden' invariance property of Fourier coefficients. We apply these results to minimal and next-to-minimal automorphic representations, and deduce Eulerianity for a large class of Fourier and Fourier-Jacobi coefficients. In particular, we prove Eulerianity for parabolic Fourier coefficients with characters of maximal rank for a class of Eisenstein series in minimal and next-to-minimal representations of groups of ADE-type that are of interest in string theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源