论文标题

通过图引导表示学习在文本中利用结构化知识

Exploiting Structured Knowledge in Text via Graph-Guided Representation Learning

论文作者

Shen, Tao, Mao, Yi, He, Pengcheng, Long, Guodong, Trischler, Adam, Chen, Weizhu

论文摘要

在这项工作中,我们旨在为预训练的语言模型提供结构化知识。我们通过知识图的指导来介绍两个对原始文本学习的自我监督任务。在实体级别的掩盖语言模型的基础上,我们的第一个贡献是实体掩盖方案,该方案利用了文本基础的关系知识。通过使用链接的知识图来选择信息丰富的实体,然后掩盖其提及,可以实现这一点。此外,我们使用知识图来获取蒙版实体的干扰因素,并提出了一个新颖的分散分心的排名目标,该目标是通过蒙版语言模型共同优化的。与现有范式相反,我们的方法仅在预训练期间隐式使用知识图,以通过从原始文本学习来注入具有结构性知识的语言模型。它比基于检索的方法更有效,该方法在鉴定和推理过程中执行实体链接和集成,并且比直接从串联图三元一的方法更有效地概括了概括。实验表明,我们提出的模型在五个基准数据集上实现了提高的性能,包括问题答案和知识基础完成任务。

In this work, we aim at equipping pre-trained language models with structured knowledge. We present two self-supervised tasks learning over raw text with the guidance from knowledge graphs. Building upon entity-level masked language models, our first contribution is an entity masking scheme that exploits relational knowledge underlying the text. This is fulfilled by using a linked knowledge graph to select informative entities and then masking their mentions. In addition we use knowledge graphs to obtain distractors for the masked entities, and propose a novel distractor-suppressed ranking objective which is optimized jointly with masked language model. In contrast to existing paradigms, our approach uses knowledge graphs implicitly, only during pre-training, to inject language models with structured knowledge via learning from raw text. It is more efficient than retrieval-based methods that perform entity linking and integration during finetuning and inference, and generalizes more effectively than the methods that directly learn from concatenated graph triples. Experiments show that our proposed model achieves improved performance on five benchmark datasets, including question answering and knowledge base completion tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源