论文标题

封闭子集的Hausdorff尺寸

Hausdorff dimension of closed subsets in profinite groups

论文作者

Heras, Iker de las

论文摘要

相对于给定的过滤,一个基于次数的涂鸦组可以自然地看作是一个度量空间,因此,它具有明确的Hausdorff尺寸函数。 Barnea和Shalev发现了一个理论上的理论表达方式,用于涂鸦集团$ g $的封闭子组的Hausdorff维度,以这种方式开放了一大堆探索的可能性。在本文中,我们将Barnea和Shalev的结果推广为$ G $的任意关闭子集。

A countably based profinite group can be naturally seen as a metric space with respect to a given filtration, and thus, it has a well defined Hausdorff dimension function. Barnea and Shalev found a group theoretical expression for the Hausdorff dimension of the closed subgroups of a profinite group $G$, opening, in this way, a bunch of possibilities to explore. In this paper we generalize Barnea's and Shalev's result to arbitrary closed subsets of $G$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源