论文标题

在双分动物和Jay-Vectors上

On bivectors and jay-vectors

论文作者

Hayes, M., Scott, N. H.

论文摘要

组合$ \ mathbf {a}+\ mathrm {i} \ mathbf {b} $其中$ {\ mathrm i}^2 = -1 $ and $ \ mathbf {a},\,\,\ mathbf {b} $是真正的载体。吉布斯(Gibbs)开发了一种双分动物理论,在该理论中,他将一个椭圆与每个双向主义者相关联。他获得了与共轭半直径对成对的结果,尤其是考虑了两个双分动物的标量产物的含义。本文是通过使用Jay-vector来开发与双曲线开发类似配方的尝试-Jay-vector是一种线性组合$ \ MathBf {a}+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ m athbf {b} $ of Real vectors $ j}^2 =+1 $,但是$ {\ mathrm j} $不是实际数字,因此$ {\ mathrm j} \ neq \ pm1 $。还考虑了两个Jay-Vector的标量产品消失的含义。我们展示了如何从任何正统三合会中产生椭圆形的三缀半直径的三倍。我们还看到了如何以类似的方式生成双曲线及其结合型双曲线的三倍的共轭半直径。简要讨论了复杂旋转(复杂的正交矩阵)的作用。应用于二阶椭圆形和双曲偏微分方程。 关键字:拆分副本,双曲线数,共晶,偶联的半直径,双曲线和椭圆形,复杂的旋转,PDES MSC(2010)35J05,35L10,74J05

A combination $\mathbf{a}+\mathrm{i}\mathbf{b}$ where ${\mathrm i}^2=-1$ and $\mathbf{a}, \, \mathbf{b}$ are real vectors is called a bivector. Gibbs developed a theory of bivectors, in which he associated an ellipse with each bivector. He obtained results relating pairs of conjugate semi-diameters and in particular considered the implications of the scalar product of two bivectors being zero. This paper is an attempt to develop a similar formulation for hyperbolas by the use of jay-vectors - a jay-vector is a linear combination $\mathbf{a}+\mathrm{j}\mathbf{b}$ of real vectors $\mathbf{a}$ and $\mathbf{b}$, where ${\mathrm j}^2=+1$ but ${\mathrm j}$ is not a real number, so ${\mathrm j}\neq\pm1$. The implications of the vanishing of the scalar product of two jay-vectors is also considered. We show how to generate a triple of conjugate semi-diameters of an ellipsoid from any orthonormal triad. We also see how to generate in a similar manner a triple of conjugate semi-diameters of a hyperboloid and its conjugate hyperboloid. The role of complex rotations (complex orthogonal matrices) is discussed briefly. Application is made to second order elliptic and hyperbolic partial differential equations. Keywords: Split complex numbers, Hyperbolic numbers, Coquaternions, Conjugate semi-diameters, Hyperboloids and ellipsoids, Complex rotations, PDEs MSC (2010) 35J05, 35L10, 74J05

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源