论文标题
拓扑订购的曲折纳米替宾:$ e/2 $分数边缘充电,旋转电荷分离和基态退化
Topologically ordered zigzag nanoribbon: $e/2$ fractional edge charge, spin-charge separation, and ground state degeneracy
论文作者
论文摘要
我们从数值上计算具有Midgap状态的相互作用曲折石墨烯纳米替烯(ZGNR)的状态密度(DOS),显示$ E/2 $分数边缘电荷。计算出的Hartree-fock DOS在差距消失的关键障碍强度处是线性的。这意味着$ i \ mbox { - } v $曲线$ i \ propto v^2 $。因此,$ i \ mbox { - } v $曲线测量可能会产生相互作用的ZGNR相互作用电荷的证据。我们表明,即使是弱的疾病潜力也充当锯齿形边缘电子状态的奇异扰动,从而产生了能量谱的急剧变化。旋转电荷分离和分数电荷在边缘抗铁磁性的重建中起关键作用。我们的结果表明,相互作用的ZGNR是拓扑秩序的Mott-Anderson绝缘子。
We numerically compute the density of states (DOS) of interacting disordered zigzag graphene nanoribbon (ZGNR) having midgap states showing $e/2$ fractional edge charges. The computed Hartree-Fock DOS is linear at the critical disorder strength where the gap vanishes. This implies an $I\mbox{-}V$ curve of $I\propto V^2$. Thus, $I\mbox{-}V$ curve measurement may yield evidence of fractional charges in interacting disordered ZGNR. We show that even a weak disorder potential acts as a singular perturbation on zigzag edge electronic states, producing drastic changes in the energy spectrum. Spin-charge separation and fractional charges play a key role in the reconstruction of edge antiferromagnetism. Our results show that an interacting disordered ZGNR is a topologically ordered Mott-Anderson insulator.