论文标题

使用石墨烯现场效应晶体管生成非均匀随机变体的系统

A System for Generating Non-Uniform Random Variates using Graphene Field-Effect Transistors

论文作者

Tye, Nathaniel Joseph, Meech, James Timothy, Bilgin, Bilgesu Arif, Stanley-Marbell, Phillip

论文摘要

我们基于石墨烯场现场效应晶体管(GFET)的转移特性,引入了一种新方法,用于硬件非均匀的随机数生成,该特征需要大约两个晶体管和一个电阻器(或透射放大器)。该方法可以集成到自定义计算系统中,以提供来自任意单变量分布的样本。我们还证明了目标分布的小波分解来确定多GFET阵列中的GFET偏置电压。 我们通过制造多个GFET来实现该方法,并在实验上验证其传递特性表现出我们方法所依赖的非线性。我们在对拟议体系结构的模拟中使用表征数据来从动态选择的非均匀概率分布中生成样品。 通过在一系列偏置条件下的GFET实验测量以及基于GFET的非均匀随机变化发生器结构的模拟的组合,我们证明了蒙特卡洛集成的加速速度最高为2 $ \ times $。该加速器假设模拟转换器读取电路的输出可以在与执行内存访问所花费的时间相同的时间内产生样本。

We introduce a new method for hardware non-uniform random number generation based on the transfer characteristics of graphene field-effect transistors (GFETs) which requires as few as two transistors and a resistor (or transimpedance amplifier). The method could be integrated into a custom computing system to provide samples from arbitrary univariate distributions. We also demonstrate the use of wavelet decomposition of the target distribution to determine GFET bias voltages in a multi-GFET array. We implement the method by fabricating multiple GFETs and experimentally validating that their transfer characteristics exhibit the nonlinearity on which our method depends. We use the characterization data in simulations of a proposed architecture for generating samples from dynamically-selectable non-uniform probability distributions. Using a combination of experimental measurements of GFETs under a range of biasing conditions and simulation of the GFET-based non-uniform random variate generator architecture, we demonstrate a speedup of Monte Carlo integration by a factor of up to 2$\times$. This speedup assumes the analog-to-digital converters reading the outputs from the circuit can produce samples in the same amount of time that it takes to perform memory accesses.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源