论文标题

图像与感知约束和STN对齐

Image Morphing with Perceptual Constraints and STN Alignment

论文作者

Fish, Noa, Zhang, Richard, Perry, Lilach, Cohen-Or, Daniel, Shechtman, Eli, Barnes, Connelly

论文摘要

在图像变形中,合成一系列合理的帧并合成合成,以在给定实例之间形成平滑的转换。中级必须保持忠实的意见,作为集合成员独立站立,并保持从一个人到下一个的视觉过渡。在本文中,我们提出了一个有条件的GAN变形框架,在一对输入图像上运行。对网络进行了训练,可以合成与转换沿时间样本相对应的框架,并在此之前学会了适当的形状,从而增强了中间框架的合理性。尽管对抗性设置提高了单个框架的合理性,但一种特殊的训练协议产生了框架的序列,结合了感知相似性损失,随着时间的推移促进平稳的转换。对应关系的显式说明被基于网格的自由形变形空间变压器取代,该空间变压器预测输入之间的几何扭曲,从而通过使形状使形状成为初始比对来制定平滑的几何效果。我们提供了与经典和潜在的空间变形技术的比较,并证明,鉴于一组自学图像,我们的网络学会学会产生视觉令人愉悦的变形效果,具有可信的内weens,具有强大的形状和纹理变化,不需要通信。

In image morphing, a sequence of plausible frames are synthesized and composited together to form a smooth transformation between given instances. Intermediates must remain faithful to the input, stand on their own as members of the set, and maintain a well-paced visual transition from one to the next. In this paper, we propose a conditional GAN morphing framework operating on a pair of input images. The network is trained to synthesize frames corresponding to temporal samples along the transformation, and learns a proper shape prior that enhances the plausibility of intermediate frames. While individual frame plausibility is boosted by the adversarial setup, a special training protocol producing sequences of frames, combined with a perceptual similarity loss, promote smooth transformation over time. Explicit stating of correspondences is replaced with a grid-based freeform deformation spatial transformer that predicts the geometric warp between the inputs, instituting the smooth geometric effect by bringing the shapes into an initial alignment. We provide comparisons to classic as well as latent space morphing techniques, and demonstrate that, given a set of images for self-supervision, our network learns to generate visually pleasing morphing effects featuring believable in-betweens, with robustness to changes in shape and texture, requiring no correspondence annotation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源