论文标题
高速光学相干弹性的深度学习
Deep Learning for High Speed Optical Coherence Elastography
论文作者
论文摘要
组织的机械性能为识别病变提供了有价值的信息。获得弹性特性定量估计的一种方法是具有光学相干弹性图(OCE)的剪切波弹性图。但是,鉴于剪切波速度,仍然很难估计弹性特性。因此,我们提出了深度学习,以直接从OCE数据中预测弹性组织特性。我们以30 kHz的框架获取2D图像,并使用卷积神经网络预测明胶浓度,我们将其用作组织弹性的替代物。我们使用剪切波速度作为特征将我们的深度学习方法与传统回归模型的预测进行了比较。常规方法的平均绝对预测错误范围为1.32 $ \ pm $ 0.98 p.p.至1.57 $ \ pm $ 1.30 p.p.而我们报告的卷积神经网络的错误为0.90 $ \ pm $ 0.84 p.p,具有3D时空输入。我们的结果表明,基于显式剪切波速度估计,对时空数据的深入学习优于弹性。
Mechanical properties of tissue provide valuable information for identifying lesions. One approach to obtain quantitative estimates of elastic properties is shear wave elastography with optical coherence elastography (OCE). However, given the shear wave velocity, it is still difficult to estimate elastic properties. Hence, we propose deep learning to directly predict elastic tissue properties from OCE data. We acquire 2D images with a frame rate of 30 kHz and use convolutional neural networks to predict gelatin concentration, which we use as a surrogate for tissue elasticity. We compare our deep learning approach to predictions from conventional regression models, using the shear wave velocity as a feature. Mean absolut prediction errors for the conventional approaches range from 1.32$\pm$0.98 p.p. to 1.57$\pm$1.30 p.p. whereas we report an error of 0.90$\pm$0.84 p.p for the convolutional neural network with 3D spatio-temporal input. Our results indicate that deep learning on spatio-temporal data outperforms elastography based on explicit shear wave velocity estimation.