论文标题

相关布朗动作的有限时间破坏概率

Finite-time ruin probability for correlated Brownian motions

论文作者

Dȩbicki, Krzysztof, Hashorva, Enkelejd, Krystecki, Konrad

论文摘要

令$(W_1(S),W_2(t)),S,T \ GE 0 $为双变量的Brownian运动,具有标准的Brownian运动边缘和恒定相关性$ρ\ in(-1,1)$,并定义了这两个上能力的共同生存概率, $π_ρ(C_1,C_2; U,V)= \ MathBb {P} \ left(\ sup_ {s s s \ in [0,1]} \ left(w_1(s)-c_1s \ oright)> ,$$,其中$ c_1,c_2 \ in \ mathbb {r} $和$ u,v $给出了正常数。 $π_ρ(C_1,C_2; U,V)$的近似值对于分析双变量Brownian风险模型以及双变量测试统计的研究而言是感兴趣的。在此贡献中,我们以$π_ρ(c_1,c_2; u,v)$得出紧密的界限。

Let $(W_1(s), W_2(t)), s,t\ge 0$ be a bivariate Brownian motion with standard Brownian motion marginals and constant correlation $ρ\in (-1,1)$ and define the joint survival probability of both supremum functionals $π_ρ(c_1,c_2; u, v)$ by $$π_ρ(c_1,c_2; u, v)=\mathbb{P}\left(\sup_{s \in [0,1]} \left(W_1(s)-c_1s\right)>u,\sup_{t \in [0,1]} \left(W_2(t)-c_2t\right)>v\right) ,$$ where $c_1,c_2 \in \mathbb{R}$ and $u,v$ are given positive constants. Approximation of $π_ρ(c_1,c_2; u, v) $ is of interest for the analysis of ruin probability in bivariate Brownian risk model as well as in the study of bivariate test statistics. In this contribution we derive tight bounds for $π_ρ(c_1,c_2; u, v)$ in the case $ρ\in (0,1)$ and obtain precise approximations by letting $u\to \infty$ and taking $v= au$ for some fixed positive constant $a$ and $ρ\in (-1,1).$

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源