论文标题

植物中心本地化的深度转移学习

Deep Transfer Learning For Plant Center Localization

论文作者

Cai, Enyu, Baireddy, Sriram, Yang, Changye, Crawford, Melba, Delp, Edward J.

论文摘要

植物表型的重点是整个生长季节的植物特征的测量,通常是为了评估植物育种的基因型。估计植物位置对于识别出现较低的基因型很重要,这也与诸如肥料应用等环境和管理实践有关。本文的目的是调查使用使用无人机(无人机)捕获的RGB空中图像来估算基于现场农作物的植物位置的方法。深度学习方法为定位在RGB图像中观察到的植物提供了有希望的能力,但是它们需要大量标记的数据(地面真相)进行培训。在其他地理区域或其他农作物中,使用在单个领域或单一的田地上进行微调的深度学习体系结构可能没有良好的效果。为每个新领域创造地面真理的问题是劳动密集型和乏味的问题。在本文中,我们提出了一种通过使用有限的地面真实数据将现有模型转移到新场景中来估算植物中心的方法。我们描述了使用对单个场或单一类型的植物进行微调的模型在各种类似的农作物和田地上使用单一类型的植物的使用。我们表明,转移学习为检测植物位置提供了有希望的结果。

Plant phenotyping focuses on the measurement of plant characteristics throughout the growing season, typically with the goal of evaluating genotypes for plant breeding. Estimating plant location is important for identifying genotypes which have low emergence, which is also related to the environment and management practices such as fertilizer applications. The goal of this paper is to investigate methods that estimate plant locations for a field-based crop using RGB aerial images captured using Unmanned Aerial Vehicles (UAVs). Deep learning approaches provide promising capability for locating plants observed in RGB images, but they require large quantities of labeled data (ground truth) for training. Using a deep learning architecture fine-tuned on a single field or a single type of crop on fields in other geographic areas or with other crops may not have good results. The problem of generating ground truth for each new field is labor-intensive and tedious. In this paper, we propose a method for estimating plant centers by transferring an existing model to a new scenario using limited ground truth data. We describe the use of transfer learning using a model fine-tuned for a single field or a single type of plant on a varied set of similar crops and fields. We show that transfer learning provides promising results for detecting plant locations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源