论文标题

学习对模型进行排名的有效解释

Valid Explanations for Learning to Rank Models

论文作者

Singh, Jaspreet, Wang, Zhenye, Khosla, Megha, Anand, Avishek

论文摘要

学习到级别(LTR)是一类监督学习技术,适用于对涉及大量功能的排名问题。 LTR模型在各种领域的优先级信息中的普及和广泛应​​用使它们的可概念性在当今的公平和透明学习系统的景观中至关重要。但是,有限的工作涉及解释输出排名的学习系统的决策。在本文中,我们提出了一种模型不可知的本地解释方法,该方法旨在将一小部分输入特征作为排名决策的解释。我们介绍了有效性和完整性的新概念,专门针对排名的解释,基于所选特征的存在,作为衡量善良的一种方式。我们设计了一个新颖的优化问题,以最大程度地直接提高有效性,并提出贪婪算法作为解决方案。在广泛的定量实验中,我们表明,我们的方法在有效性的同时不妥协完整性的情况下,跨点,成对和列表的LTR模型跨越了其他模型不可知的解释方法。

Learning-to-rank (LTR) is a class of supervised learning techniques that apply to ranking problems dealing with a large number of features. The popularity and widespread application of LTR models in prioritizing information in a variety of domains makes their scrutability vital in today's landscape of fair and transparent learning systems. However, limited work exists that deals with interpreting the decisions of learning systems that output rankings. In this paper we propose a model agnostic local explanation method that seeks to identify a small subset of input features as explanation to a ranking decision. We introduce new notions of validity and completeness of explanations specifically for rankings, based on the presence or absence of selected features, as a way of measuring goodness. We devise a novel optimization problem to maximize validity directly and propose greedy algorithms as solutions. In extensive quantitative experiments we show that our approach outperforms other model agnostic explanation approaches across pointwise, pairwise and listwise LTR models in validity while not compromising on completeness.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源