论文标题
具有高保真模拟器的动态异常检测:凸优化方法
Dynamic Anomaly Detection with High-fidelity Simulators: A Convex Optimization Approach
论文作者
论文摘要
本文的主要目的是在我们可以使用电源系统的高保真模拟器时开发可扩展的动态异常检测器。一方面,这些高保真模拟器的数学模型通常“棘手”以应用现有的基于模型的方法。另一方面,纯数据驱动的方法主要是在机器学习文献中开发的,忽略了我们对系统基础动态的了解。在这项研究中,我们结合了这两种主流方法的工具,以开发一种诊断过滤器,该诊断过滤器利用了动力学系统的知识以及高保真模拟器的模拟数据。提出的诊断过滤器旨在实现两个预期的特征:(i)相对于模型不匹配的性能鲁棒性; (ii)高可扩展性。为此,我们提出了一个基于易于优化的(凸)优化的重新制定,其中决策是滤波器参数,基于模型的信息引入了可行的集合,并且来自模拟器的数据形成了对模型不匹配对滤波器性能的影响的目标函数。为了验证理论结果,我们在Digsilent PowerFactory中实施了开发的诊断过滤器,以检测三个区域IEEE 39-BUS系统中自动生成控制测量结果的错误数据注射攻击。
The main objective of this article is to develop scalable dynamic anomaly detectors when high-fidelity simulators of power systems are at our disposal. On the one hand, mathematical models of these high-fidelity simulators are typically "intractable" to apply existing model-based approaches. On the other hand, pure data-driven methods developed primarily in the machine learning literature neglect our knowledge about the underlying dynamics of the systems. In this study, we combine tools from these two mainstream approaches to develop a diagnosis filter that utilizes the knowledge of both the dynamical system as well as the simulation data of the high-fidelity simulators. The proposed diagnosis filter aims to achieve two desired features: (i) performance robustness with respect to model mismatch; (ii) high scalability. To this end, we propose a tractable (convex) optimization-based reformulation in which decisions are the filter parameters, the model-based information introduces feasible sets, and the data from the simulator forms the objective function to-be-minimized regarding the effect of model mismatch on the filter performance. To validate the theoretical results, we implement the developed diagnosis filter in DIgSILENT PowerFactory to detect false data injection attacks on the Automatic Generation Control measurements in the three-area IEEE 39-bus system.