论文标题
在$ q $ -isomonoDromic变形和$ q $ -nekrasov功能上
On $q$-Isomonodromic Deformations and $q$-Nekrasov Functions
论文作者
论文摘要
我们在5D Nekrasov函数上构建了一个基本系统,该系统具有$ Q $ n $ n $的排名$ n $,并用$ q = t $。我们的基本系统将限制$ q \ to $ q \ to 1 $归为差分兰克斯对的基本系统,该系统产生了富士 - 苏木 - tsuda系统。我们将系统的tau函数介绍为5D Nekrasov函数的傅立叶变换。使用$ 0 $和$ \ infty $的基本系统的渐近扩展,我们获得了tau函数的几个决定性身份。
We construct a fundamental system of a $q$-difference Lax pair of rank $N$ in terms of 5d Nekrasov functions with $q=t$. Our fundamental system degenerates by the limit $q\to 1$ to a fundamental system of a differential Lax pair, which yields the Fuji-Suzuki-Tsuda system. We introduce tau functions of our system as Fourier transforms of 5d Nekrasov functions. Using asymptotic expansions of the fundamental system at $0$ and $\infty$, we obtain several determinantal identities of the tau functions.