论文标题
使用合成数据扩展为数据集偏置放置偏差
Deflating Dataset Bias Using Synthetic Data Augmentation
论文作者
论文摘要
自大规模对象识别数据集发布和引入可扩展计算硬件以来,深度学习的视力应用程序始终存在。大多数自动驾驶汽车视觉任务(AV)的最新方法依赖于监督学习,并且通常无法推广到域的变化和/或离群值。因此,数据集多样性是成功实现现实世界部署的关键。无论数据集的大小多大,捕获与特定于任务的环境因素有关的长尾巴的长尾巴都是不切实际的。本文的目的是调查目标合成数据增强的使用 - 结合游戏引擎仿真和SIM2REAL样式转移技术的好处 - 以填补实际数据集中的空白以进行视觉任务。对AVS实用使用的三种不同计算机视觉任务的经验研究 - 停车插槽检测,车道检测和单眼深度估计 - 始终表明,与仅在训练集的相同大小的实际数据相比,训练组合中的合成数据在训练组合中提供了显着的跨模型概括性能的显着提高。
Deep Learning has seen an unprecedented increase in vision applications since the publication of large-scale object recognition datasets and introduction of scalable compute hardware. State-of-the-art methods for most vision tasks for Autonomous Vehicles (AVs) rely on supervised learning and often fail to generalize to domain shifts and/or outliers. Dataset diversity is thus key to successful real-world deployment. No matter how big the size of the dataset, capturing long tails of the distribution pertaining to task-specific environmental factors is impractical. The goal of this paper is to investigate the use of targeted synthetic data augmentation - combining the benefits of gaming engine simulations and sim2real style transfer techniques - for filling gaps in real datasets for vision tasks. Empirical studies on three different computer vision tasks of practical use to AVs - parking slot detection, lane detection and monocular depth estimation - consistently show that having synthetic data in the training mix provides a significant boost in cross-dataset generalization performance as compared to training on real data only, for the same size of the training set.