论文标题
De Rham复合物用于弱彩素有限元元素空间
De Rham Complexes for Weak Galerkin Finite Element Spaces
论文作者
论文摘要
引入了有限元空间的两个DE RHAM复合序列,以用于弱有限元函数,并且在一般多面体元素上的弱Galerkin(WG)有限元方法中开发的弱衍生物。其中一个序列使用序列中涉及的所有有限元空间的多项式使用等级的多项式,另一个序列使用自然偏向的顺序的多项式。结果表明,两个DE RHAM复合物中的图表都用于通用多面体元素。为最低级元素建立了其中一种复合物的精确性。
Two de Rham complex sequences of the finite element spaces are introduced for weak finite element functions and weak derivatives developed in the weak Galerkin (WG) finite element methods on general polyhedral elements. One of the sequences uses polynomials of equal order for all the finite element spaces involved in the sequence and the other one uses polynomials of naturally decending orders. It is shown that the diagrams in both de Rham complexes commute for general polyhedral elements. The exactness of one of the complexes is established for the lowest order element.