论文标题
多项式动力学对的算术
The arithmetic of polynomial dynamical pairs
论文作者
论文摘要
我们研究由具有明显点的多项式给出的一维代数对。我们证明了此类对的“不太可能的交叉点”陈述,从而为这些对表现出强烈的刚性特征。我们从此结果推断出多项式模量空间中曲线的动力学构想,通过在此参数空间中描述包含许多无限后有限有限的有限参数的一维家族。
We study one-dimensional algebraic families of pairs given by a polynomial with a marked point. We prove an "unlikely intersection" statement for such pairs thereby exhibiting strong rigidity features for these pairs. We infer from this result the dynamical André-Oort conjecture for curves in the moduli space of polynomials, by describing one-dimensional families in this parameter space containing infinitely many post-critically finite parameters.