论文标题
ETA配对状态在扩展的哈伯德模型中作为真正的疤痕
Eta-pairing states as true scars in an extended Hubbard Model
论文作者
论文摘要
ETA配对状态是高皮块晶格上哈伯德模型的一组已知的特征状态,最初是由Yang [Phys [phys]发现的。莱特牧师。 63,2144(1989)]。这些状态在哈伯德模型中不是多体疤痕状态,因为它们占据了由所谓的“ Eta-pairing SU(2)”对称性所定义的独特对称部门。我们研究了一个具有键合相互作用的扩展哈伯德模型,该模型由Hirsch [Physica C 158,326(1989)]推广,其中ETA配对状态在没有ETA配对对称性并成为真正的疤痕状态的情况下生存下来。我们还讨论了Schecter和Iadecola [Phys。莱特牧师。 123,147201(2019)],系统地达到了所有最近的邻居条款,可在1d中保留此类疤痕塔。我们还将这些术语推广到任意的两分晶格。我们对SPIN-1 XY模型的研究还导致我们建立了几种新的疤痕模型,包括具有1D和2D的现实量子磁铁设置,其中包括带有Dzyaloshinkskii-Moriya相互作用的Spin-1/2 $ J_1-J_2 $模型。
The eta-pairing states are a set of exactly known eigenstates of the Hubbard model on hypercubic lattices, first discovered by Yang [Phys. Rev. Lett. 63, 2144 (1989)]. These states are not many-body scar states in the Hubbard model because they occupy unique symmetry sectors defined by the so-called "eta-pairing SU(2)" symmetry. We study an extended Hubbard model with bond-charge interactions, popularized by Hirsch [Physica C 158, 326 (1989)], where the eta-pairing states survive without the eta-pairing symmetry and become true scar states. We also discuss similarities between the eta-pairing states and exact scar towers in the spin-1 XY model found by Schecter and Iadecola [Phys. Rev. Lett. 123, 147201 (2019)], and systematically arrive at all nearest-neighbor terms that preserve such scar towers in 1D. We also generalize these terms to arbitrary bipartite lattices. Our study of the spin-1 XY model also leads us to several new scarred models, including a spin-1/2 $J_1-J_2$ model with Dzyaloshinkskii-Moriya interaction, in realistic quantum magnet settings in 1D and 2D.