论文标题
哈伯德模型中的ETA对:从产生代数到量子多体疤痕的光谱
Eta-Pairing in Hubbard Models: From Spectrum Generating Algebras to Quantum Many-Body Scars
论文作者
论文摘要
我们在哈伯德模型中重新审视了$η$ pair的状态,并探索它们与量子多体疤痕的联系以发现通用疤痕机制。 $η$ - 绘制是由于代数结构被称为频谱产生代数(SGA),从而产生了光谱中特征状态的较宽塔。我们概括了原始的$η$ pairing结构,并显示了在任意图上的几种类似Hubbard的型号展示了SGA,其中包括具有无序和旋转轨道耦合的模型。我们进一步定义了一个受限制的频谱生成代数(RSGA),并给出了类似于哈伯德模型的扰动的例子,这些模型将原始模型的特征状态的原始模型的较高塔保持在尤其之远。幸存的塔的状态表现出亚热纠缠的熵,我们通过分析地获得了它们位于大部分光谱中的参数状态,表明它们是确切的量子多体疤痕。 RSGA框架还解释了几种众所周知的量子疤痕模型(包括AKLT模型)中的本征态塔。
We revisit the $η$-pairing states in Hubbard models and explore their connections to quantum many-body scars to discover a universal scars mechanism. $η$-pairing occurs due to an algebraic structure known as a Spectrum Generating Algebra (SGA), giving rise to equally spaced towers of eigenstates in the spectrum. We generalize the original $η$-pairing construction and show that several Hubbard-like models on arbitrary graphs exhibit SGAs, including ones with disorder and spin-orbit coupling. We further define a Restricted Spectrum Generating Algebra (RSGA) and give examples of perturbations to the Hubbard-like models that preserve an equally spaced tower of the original model as eigenstates. The states of the surviving tower exhibit a sub-thermal entanglement entropy, and we analytically obtain parameter regimes for which they lie in the bulk of the spectrum, showing that they are exact quantum many-body scars. The RSGA framework also explains the equally spaced towers of eigenstates in several well-known models of quantum scars, including the AKLT model.