论文标题

用于学习能源保存动态系统的变分集成商图网络

Variational Integrator Graph Networks for Learning Energy Conserving Dynamical Systems

论文作者

Desai, Shaan, Mattheakis, Marios, Roberts, Stephen

论文摘要

最近的进步表明,嵌入物理知识的先验的神经网络在学习和预测复杂物理系统的长期动态方面显着超过了香草神经网络,从嘈杂的数据中。尽管取得了成功,但对于如何最佳结合物理先验以提高预测性能的研究只有有限的研究。为了解决这个问题,我们将最近的创新拆除并概括为个体的归纳偏见段。因此,我们能够系统地研究其现有方法是自然子集的归纳偏差的所有可能组合。使用此框架,我们介绍了各种积分器图网络 - 一种新颖的方法,该方法通过结合能量约束,高阶符号变分积分器和图形神经网络来统一现有方法的优势。我们证明,在广泛的消融中,提出的统一框架的表现优于现有方法,用于数据有效的学习和预测精度,在最近的文献中研究的单身和多体问题。我们从经验上表明,出现了改进,因为高阶变分积分与势能约束相结合,可以通过分区的runge-kutta方法对广义位置和动量更新进行耦合学习。

Recent advances show that neural networks embedded with physics-informed priors significantly outperform vanilla neural networks in learning and predicting the long term dynamics of complex physical systems from noisy data. Despite this success, there has only been a limited study on how to optimally combine physics priors to improve predictive performance. To tackle this problem we unpack and generalize recent innovations into individual inductive bias segments. As such, we are able to systematically investigate all possible combinations of inductive biases of which existing methods are a natural subset. Using this framework we introduce Variational Integrator Graph Networks - a novel method that unifies the strengths of existing approaches by combining an energy constraint, high-order symplectic variational integrators, and graph neural networks. We demonstrate, across an extensive ablation, that the proposed unifying framework outperforms existing methods, for data-efficient learning and in predictive accuracy, across both single and many-body problems studied in recent literature. We empirically show that the improvements arise because high order variational integrators combined with a potential energy constraint induce coupled learning of generalized position and momentum updates which can be formalized via the Partitioned Runge-Kutta method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源