论文标题

在半砷的riemann表面上封闭的大地测量学

Closed geodesics on semi-arithmetic Riemann surfaces

论文作者

Cosac, Gregory, Dória, Cayo

论文摘要

在本文中,我们通过数字理论和双曲几何形状研究了半弧度riemann表面的几何方面。首先,我们表明了各种形状的许多半砷的riemann表面的存在,并证明它们的收缩在积极的实际数字中是密集的。此外,这导致了每个属$ g \ geq 2的构造,这是半弧形表面的$ $ geq,具有成对的不同不变的痕迹田地,对B. jeon的猜想产生了负面的答案。最后,对于任何半砷表面,我们都会发现一系列具有对数收缩期生长的一致性覆盖率,并且对于承认模块化嵌入的特殊情况,我们可以表现出明确的常数。

In this article, we study geometric aspects of semi-arithmetic Riemann surfaces by means of number theory and hyperbolic geometry. First, we show the existence of infinitely many semi-arithmetic Riemann surfaces of various shapes and prove that their systoles are dense in the positive real numbers. Furthermore, this leads to a construction, for each genus $g \geq 2,$ of infinite families of semi-arithmetic surfaces with pairwise distinct invariant trace fields, giving a negative answer to a conjecture of B. Jeon. Finally, for any semi-arithmetic surface we find a sequence of congruence coverings with logarithmic systolic growth and, for the special case of surfaces admitting modular embedding, we are able to exhibit explicit constants.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源