论文标题
新的2D $ \ Mathcal {n} =(0,2)$二元性来自四个维度
New 2d $\mathcal{N}=(0,2)$ dualities from four dimensions
论文作者
论文摘要
我们提出了一些新的Infra-Red双重性,价格为$ 2D $ $ \ MATHCAL {N} =(0,2)$ Theories。第一个将$ USP(2N)$量规理论与一种反对称性手性,四种基本手性和$ n $ fermi Singlets与$ n $ fermi的Landau-Ginzburg型号以及具有立方体互动的Landau-Ginzburg模型。第二个将任意长度$ n-1 $的$ su(2)$线性颤抖量表与任何非负整数$ n $添加$ n $ fermi singlets。它们可以理解为具有四种基本手性的$ su(2)$仪表理论之间的二元性的概括,一个基本的手性和一个具有立方相互作用的手法的Landau-Ginzburg模型。我们从已知的$ 4D $ $ \ MATHCAL {N} = 1 $二元性中得出这些双重性,并通过$ \ Mathbb {s}^2 $带有合适的拓扑曲折,我们通过与异常和椭圆形属性进行匹配,并进一步测试它们。我们还通过一些更基本的二元性的迭代应用来展示如何得出它们,类似于在三个和四个维度中对父母双重性的类似推导。
We propose some new infra-red dualities for $2d$ $\mathcal{N}=(0,2)$ theories. The first one relates a $USp(2N)$ gauge theory with one antisymmetric chiral, four fundamental chirals and $N$ Fermi singlets to a Landau-Ginzburg model of $N$ Fermi and $6N$ chiral fields with cubic interactions. The second one relates $SU(2)$ linear quiver gauge theories of arbitrary length $N-1$ with the addition of $N$ Fermi singlets for any non-negative integer $N$. They can be understood as a generalization of the duality between an $SU(2)$ gauge theory with four fundamental chirals and a Landau-Ginzburg model of one Fermi and six chirals with a cubic interaction. We derive these dualities from already known $4d$ $\mathcal{N}=1$ dualities by compactifications on $\mathbb{S}^2$ with suitable topological twists and we further test them by matching anomalies and elliptic genera. We also show how to derive them by iterative applications of some more fundamental dualities, in analogy with similar derivations for parent dualities in three and four dimensions.