论文标题
非肾脏弹性
Nonreciprocal Elasticity
论文作者
论文摘要
已将非交流性引入到各个领域,以实现非对称,非线性和/或时间非固定物理系统。借助Maxwell-Betti相互定理,只有使用非线性材料才有可能打破动态机械系统的时间反转对称性。尽管如此,非线性材料应伴有几何不对称,以实现静态系统中的非年代性。在这里,我们进一步研究了这一点,并证明了一种新颖的非偏弹性概念。我们表明,只有在材料表现出非肾脏弹性时,才能实现静态机械系统的非交流性。我们在实验上证明了具有非倒角弹性的线性和非线性材料。通过拓扑力学,我们证明了机械非肾脏的性能无论材料是线性的还是非线性弹性,都需要非偏置弹性。我们表明,具有非转录弹性的线性材料可以实现非偏型型系统。此处开发的非互联网弹性将开放具有有效非逆时针的机械系统设计的新场地。
Nonreciprocity has been introduced to various fields to realize asymmetric, nonlinear, and/or time non-revisal physical systems. By virtue of the Maxwell-Betti reciprocal theorem, breaking the time-reversal symmetry of dynamic mechanical systems is only possible using nonlinear materials. Nonetheless, nonlinear materials should be accompanied by geometrical asymmetries to achieve nonreciprocity in static systems. Here, we further investigate this and demonstrate a novel nonreciprocal elasticity concept. We show that the nonreciprocity of static mechanical systems can be achieved only and only if the material exhibits nonreciprocal elasticity. We experimentally demonstrate linear and nonlinear materials with nonreciprocal elasticities. By means of topological mechanics, we demonstrate that the mechanical nonreciprocity requires nonreciprocal elasticity no matter what the material is linear or nonlinear elastic. We show that linear materials with nonreciprocal elasticity can realize nonreciprocal-topological systems. The nonreciprocal elasticity developed here will open new venues of the design of mechanical systems with effective nonreciprocity.