论文标题

3D固体球形双光谱CNNS用于生物医学纹理分析

3D Solid Spherical Bispectrum CNNs for Biomedical Texture Analysis

论文作者

Oreiller, Valentin, Andrearczyk, Vincent, Fageot, Julien, Prior, John O., Depeursinge, Adrien

论文摘要

局部旋转不变(LRI)操作员在生物医学纹理分析中表现出巨大的潜力,在生物医学纹理分析中,模式出现在随机位置和方向上。可以通过计算对本地描述符的离散旋转的响应,例如局部二进制模式(LBP)或比例不变特征变换(SIFT)来获得LRI运算符。其他策略则使用高斯或可进入小波的拉普拉斯(Laplacian)实现这种不变性,从而阻止了旋转离散期间引入采样误差。在这项工作中,我们通过球形谐波的图像的局部投影获得LRI操作员,然后计算双光谱,该计算具有共享和扩展光谱的不变性属性。我们研究了嵌入浅卷积神经网络(CNN)中的LRI层设计中使用双光谱比光谱的好处进行3D图像分析。在两个数据集上评估每个设计的性能,并与标准3D CNN进行比较。第一个数据集由由合成生成的旋转模式组成的3D体积制成,而第二个数据集则包含计算机断层扫描(CT)图像中的恶性和良性肺结节。结果表明,双光谱CNN允许比光谱和标准CNN具有明显更好的3D纹理表征。此外,与标准卷积层相比,它可以通过更少的培训示例和可训练的参数有效地学习。

Locally Rotation Invariant (LRI) operators have shown great potential in biomedical texture analysis where patterns appear at random positions and orientations. LRI operators can be obtained by computing the responses to the discrete rotation of local descriptors, such as Local Binary Patterns (LBP) or the Scale Invariant Feature Transform (SIFT). Other strategies achieve this invariance using Laplacian of Gaussian or steerable wavelets for instance, preventing the introduction of sampling errors during the discretization of the rotations. In this work, we obtain LRI operators via the local projection of the image on the spherical harmonics basis, followed by the computation of the bispectrum, which shares and extends the invariance properties of the spectrum. We investigate the benefits of using the bispectrum over the spectrum in the design of a LRI layer embedded in a shallow Convolutional Neural Network (CNN) for 3D image analysis. The performance of each design is evaluated on two datasets and compared against a standard 3D CNN. The first dataset is made of 3D volumes composed of synthetically generated rotated patterns, while the second contains malignant and benign pulmonary nodules in Computed Tomography (CT) images. The results indicate that bispectrum CNNs allows for a significantly better characterization of 3D textures than both the spectral and standard CNN. In addition, it can efficiently learn with fewer training examples and trainable parameters when compared to a standard convolutional layer.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源