论文标题

vlasov-Maxwell系统的非相关性极限,具有均匀的宏观边界

The non-relativistic limit of the Vlasov-Maxwell system with uniform macroscopic bounds

论文作者

Brigouleix, Nicolas, Han-Kwan, Daniel

论文摘要

我们在本文中研究了从弗拉索夫·马克斯韦尔(Vlasov-Maxwell)到弗拉索夫 - 波森(Vlasov-Poisson)的非依赖性限制,该限制与典型的颗粒速度相比,光速较大。与\ cite {asano-ukai-86-sma},\ cite {degond-86-mmas},\ cite {schaeffer-86-cmp}来处理经典解决方案的情况,我们考虑了衡量解决方案,它们的时刻和电子磁场可以满足一些同样的界限。为此,我们使用的功能灵感来自Loeper引入的功能,以证明他对Vlasov-Poisson System \ cite {Loeper-2006}的独特性证明。我们还建立了一类特殊的测量值解决方案,对于动量变量而言,没有更高的规律性,但是它们的矩和电磁场满足了进入我们框架的所有必需条件。

We study in this paper the non-relativistic limit from Vlasov-Maxwell to Vlasov-Poisson, which corresponds to the regime where the speed of light is large compared to the typical velocities of particles. In contrast with \cite{Asano-Ukai-86-SMA}, \cite{Degond-86-MMAS}, \cite{Schaeffer-86-CMP} which handle the case of classical solutions, we consider measure-valued solutions, whose moments and electromagnetic fields are assumed to satisfy some uniform bounds. To this end, we use a functional inspired by the one introduced by Loeper in his proof of uniqueness for the Vlasov-Poisson system \cite{Loeper-2006}. We also build a special class of measure-valued solutions, that enjoy no higher regularity with respect to the momentum variable, but whose moments and electromagnetic fields satisfy all required conditions to enter our framework.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源