论文标题
vlasov-Maxwell系统的非相关性极限,具有均匀的宏观边界
The non-relativistic limit of the Vlasov-Maxwell system with uniform macroscopic bounds
论文作者
论文摘要
我们在本文中研究了从弗拉索夫·马克斯韦尔(Vlasov-Maxwell)到弗拉索夫 - 波森(Vlasov-Poisson)的非依赖性限制,该限制与典型的颗粒速度相比,光速较大。与\ cite {asano-ukai-86-sma},\ cite {degond-86-mmas},\ cite {schaeffer-86-cmp}来处理经典解决方案的情况,我们考虑了衡量解决方案,它们的时刻和电子磁场可以满足一些同样的界限。为此,我们使用的功能灵感来自Loeper引入的功能,以证明他对Vlasov-Poisson System \ cite {Loeper-2006}的独特性证明。我们还建立了一类特殊的测量值解决方案,对于动量变量而言,没有更高的规律性,但是它们的矩和电磁场满足了进入我们框架的所有必需条件。
We study in this paper the non-relativistic limit from Vlasov-Maxwell to Vlasov-Poisson, which corresponds to the regime where the speed of light is large compared to the typical velocities of particles. In contrast with \cite{Asano-Ukai-86-SMA}, \cite{Degond-86-MMAS}, \cite{Schaeffer-86-CMP} which handle the case of classical solutions, we consider measure-valued solutions, whose moments and electromagnetic fields are assumed to satisfy some uniform bounds. To this end, we use a functional inspired by the one introduced by Loeper in his proof of uniqueness for the Vlasov-Poisson system \cite{Loeper-2006}. We also build a special class of measure-valued solutions, that enjoy no higher regularity with respect to the momentum variable, but whose moments and electromagnetic fields satisfy all required conditions to enter our framework.